Eastern Pacific Ocean Circulation: Vertical motion

William S. Kessler NOAA / PMEL Seattle

The off-equatorial eastern Pacific is one of few regions with easy communication through the thermocline.

Mean SST and 20°C depth

AOML XBT data set

Temperature and zonal current at 125°W

XBT temperatures and ug. ADCP u within 7°S-8°N

Mean Curl and Vector Wind Stress

Quikscat winds (Aug 1999 - Aug 2002)

Sverdrup balance (steady, conserving potential vorticity)

The stretching due to Ekman pumping: $w_E = Curl(\tau / f)$

is balanced by stretching due to meridional motion: $f \frac{\partial w}{\partial z} = \beta v_{\xi}$

Mean SST and 20°C depth

AOML XBT data set

Mean Temperature and Meridional current along 8.5°N AOML XBT observations (+Quikscat curl)

Circulation below the thermocline Transport between 450m and 17°C (XBT geostrophy)

Winds and temperature at 10°S at the Peru coast ERS winds (1991–2002). AOML XBT temperatures

~ 10 Sv of intermediate water enters the Pacific in the southwest and leaves the Pacific as surface water in the Indonesian Throughflow

Cold, intermediate water

Mean SST with artificial wall at 4.5°S

700 km wall separates coastal upwelling from equator

Gent/Cane model run with full annual cycle forcing: FSU winds, ISCCP clouds, Sun

Model cold tongue SST with and without wall along 4.5°S 700 km wall separates coastal upwelling from equator

SST averaged over 1°S-1°N, 110°W-100°W; Gent/Cane model with annual cycle forcing

Ocean circulation in the eastern tropical Pacific:

- ♦ is surprisingly poorly known
- ♦ is unlike the zonally-homogeneous central Pacific
- has substantial mean upwelling through a thick layer
- may be a crucial window of the general circulation